Resolving mixing in Smoothed Particle Hydrodynamics

نویسنده

  • J. I. Read
چکیده

Standard formulations of smoothed particle hydrodynamics (SPH) are unable to resolve mixing at fluid boundaries. We use an error and stability analysis of the generalized SPH equations of motion to prove that this is due to two distinct problems. The first is a leading order error in the momentum equation. This should decrease with an increasing neighbour number, but does not because numerical instabilities cause the kernel to be irregularly sampled. We identify two important instabilities: the clumping instability and the banding instability, and we show that both are cured by a suitable choice of kernel. The second problem is the local mixing instability (LMI). This occurs as particles attempt to mix on the kernel scale, but are unable to due to entropy conservation. The result is a pressure discontinuity at boundaries that pushes fluids of different entropies apart. We cure the LMI by using a weighted density estimate that ensures that pressures are single-valued throughout the flow. This also gives a better volume estimate for the particles, reducing errors in the continuity and momentum equations. We demonstrate mixing in our new optimized smoothed particle hydrodynamics (OSPH) scheme using a Kelvin-Helmholtz instability (KHI) test with a density contrast of 1:2, and the ‘blob test’ a 1:10 density ratio gas sphere in a wind tunnel finding excellent agreement between OSPH and Eulerian codes. DOI: https://doi.org/10.1111/j.1365-2966.2010.16577.x Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-41881 Accepted Version Originally published at: Read, J I; Hayfield, T; Agertz, O (2010). Resolving mixing in smoothed particle hydrodynamics. Monthly Notices of the Royal Astronomical Society, 405(3):1513-1530. DOI: https://doi.org/10.1111/j.1365-2966.2010.16577.x ar X iv :0 90 6. 07 74 v2 [ as tr oph .C O ] 2 4 M ay 2 01 0 Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 27 December 2010 (MN LTEX style file v2.2) Resolving mixing in Smoothed Particle Hydrodynamics J. I. Read, T. Hayfield and O. Agertz Institute of Theoretical Physics, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland Department of Physics and Astronomy, University of Leicester, University Road, LE1 7RH Leicester, UK Department of Physics, ETH Zürich, Wolfgang-Pauli-Strasse 16, CH-8093 Zürich, Switzerland

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Investigation of Fluid Mixing in a Micro-Channel Mixer with Two Rotating Stirrers by Using the Incompressible SPH Method

Fluid mixing is a crucial and challenging process for microfluidic systems, which are widely used in biochemical processes. Because of their fast performance, active micromixers that use stirrer blades are considered for biological applications. In the present study, by using a robust and convenient Incompressible Smoothed Particle Hydrodynamics (ISPH) method, miscible mix...

متن کامل

‎Incompressible ‎smoothed particle hydrodynamics simulations on free surface flows

‎The water wave generation by wave paddle and a freely falling rigid body are examined by using an Incompressible Smoothed Particle Hydrodynamics (ISPH)‎. ‎In the current ISPH method‎, ‎the pressure was evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection scheme and the source term of pressure Poisson equation contains both of divergence free ve...

متن کامل

Investigating the Third Order Solitary Wave Generation Accuracy using Incompressible Smoothed Particle Hydrodynamics

This paper examines the generation and propagation of a Third order solitary water wave along the channel. First the Incompressible Smoothed Particle Hydrodynamics (ISPH) numerical method is described and the boundary condition handling method is presented. The numerical model is then used to simulate solitary wave propagation along the fixed depth channel. The numerical results are compared wi...

متن کامل

Simulation of Cold Rolling Process Using Smoothed Particle Hydrodynamics (SPH)

Regarding the reported capabilities and the simplifications of the smoothed particle hydrodynamics (SPH) method, as a mesh-free technique in numerical simulations of the deformation processes, a 2-D approach on cold rolling process was provided. Using and examining SPH on rolling process not only caused some minor developments on SPH techniques but revealed some physical realities. The chosen t...

متن کامل

A MODIFIED COMPRESSIBLE SMOOTHED PARTICLE HYDRODYNAMICS (MCSPH) METHOD AND ITS APPLICATION ON THE NUMERICAL SIMULATION OF LOW AND HIGH VELOCITY IMPACTS

In this study a Modified Compressible Smoothed Particle Hydrodynamics (MCSPH) method is introduced which is applicable in problems involve shock wave structures and elastic-plastic deformations of solids. As a matter of fact, algorithm of the method is based on an approach which descritizes the momentum equation into three parts and solves each part separately and calculates their effects on th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009